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Abstract. The B2 and B3 phases of solid magnesium and calcium oxides are studied non-
empirically with a fully ionic model in which the major portion of the cohesion, that not
originating from electron correlation effects, is compuédxinitio using the relativistic integrals
program. Electron correlation is incorporated by adding the short-range contributions derived
from density functional theory to the inter-ionic dispersive attractions evaluated with the inclusion
of their damping caused by overlap of the ion wavefunctions. The two-body inter-ionic
interactions and rearrangement energies needed to convert a fréenGnto an in-crystal

0O?~ ion are reported.

Improved predictions are reported for the energy differences separating the B2 and B3 phases
from the B1 structure. Previous calculations overestimated each energy difference between the
B1 and B2 phases because either the electron correlation contributions were not fully considered
or the model for the in-crystal environmental failed to produce sufficiently compreséed O
wavefunctions. The inadequacies of the environmental model in which two units of positive
charge are distributed over the surface of a sphere also explain the previous underestimation of
each energy difference between the B1 and the B3 phases. The present calculations avoid these
difficulties by using a much more realistic model for computing the in-crystal\@avefunctions.

1. Introduction

Magnesium and calcium oxides are the simplest solid oxides which have electronic charge
distributions of sufficiently high ionic character that it is reasonable to try to understand
their properties using a suitably defined fully ionic model [1]. This observation coupled
with two further reasons motivated intense theoretical study of these materials. The first
of these reasons is that they are the simplest members of a wide range of solid oxides of
technological importance. Thus Cg@nd ZrQ are ceramics like MgO and CaO [2-4],
ThG, is both a nuclear material [5] and used in fluorescent tubes whilst &@d Pu@

are reactor fuels [6,7]. The second reason for the interest in MgO and CaO is that they
are both major constituents of the mantle of the Earth and thus of geological importance
[8-12]. The development of useful geophysical models requires accurate predictions of the
pressure—volume equation of state in the experimentally inaccessible high-pressure regions
for the B1 (sixfold-coordinated rock-salt structured) phases of both these solids. Furthermore
the construction of such models requires knowledge of whether the high pressures in the
interior of the earth induce the phase transition which transforms either of these solids from
its lowest-energy B1 structure into the eightfold coordinated B2 structure. Although this
information is available from experiment [13—-15] for CaO, theoretical predictions are still
required for MgO.
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The numerous theoretical studies of magnesium and calcium oxides can be divided
into two broad types depending on whether these solids are assumed to be fully ionic. In
calculations of the first type, such as the crystal Hartree—Fock method [16—18] or various
forms of the local-density-functional linearized augmented-plane-wave method [19, 20],
no a-priori assumptions are made concerning the ionicity. The absence of any such
assumption renders these methods especially suitable for solids that are partially or wholly
bound by covalent forces. In contrast all the calculations [9-12,21-23] of the second
broad type are distinguished by resting on the fundamental assumption of a suitably
defined fully ionic model. Although the greater generality of calculations of the first
type, manifested by their avoidance of any ionicity assumption, might at first suggest that
they are in all cases preferable to those of the second type, such a conclusion would
not be correct. Thus this very generality of the former type of calculation necessitates
introducing various approximations such as the local-density-functional description of
either exchange or correlation. Since a local correlation functional misses entirely the
dispersive attraction between two ions of non-overlapping electron density, such attractions,
which have been shown [22] to contribute significantly to the cohesion of many polar
solids, are not correctly treated in calculations of the first type. Such difficulties can
be eliminated from calculations of the second type which also have two additional
advantages. The first is the ability to compute exactly, given wavefunctions of the
interacting ions, the major portions of each inter-ionic interaction, those not arising from
electron correlation. The second advantage of calculations based on the ionic model
is that they yield a transparent breakdown of the cohesive energy into inter-ionic pair
potentials plus rearrangement energies needed to convert an isolated ion into its in-crystal
form. Such decomposition is valuable because it provides the basis for constructing a
simple, transparent and yet physically highly realistic model [24], called the compressible
ion model, which can be used to predict the energetic properties of the ionic assembly
for nuclear positions other than those occurring in the cubic crystal structure for which
the original ab-initio computation was performed. This model thereby not only allows
the elastic constants, which are implicitly governed by the crystal properties in nuclear
geometries of lower than cubic symmetry, to be studied using ahéhitio results but also
enables these to be introduced [24] into molecular dynamics simulations used to study ionic
melts.

Use of a fully ionic model with its attendant advantages is justified by the evidence that
many solid oxides are essentially fully ionic. Thus analysis [25] of the electron densities
yielded by local-density-functional band-structure computations suggests full ionicity for
both MgO and CaO which is also indicated [16] for MgO by a similar analysis of the
crystal Hartree—Fock wavefunction. Furthermore there is strong evidence thawb@h
would be expected priori to be less ionic than the alkaline earth oxides, is also essentially
fully ionic. Thus its magnetic properties indicate a uraniuredéctronic configuration [26]
whilst analysis of the experimental phonon dispersion curves, treating the uranium charge
as an adjustable parameter, predicts this charge to be four [27].

The advantages of a fully ionic model were exploited in a study [22] of the B1 phase of
MgO, with the relativistic integrals program (RIP) [28, 29] being used to compute exactly
all the inter-ionic potentials that resulted from the model used to describe the in-crystal O
ion. The theoretical methods used [22] were subsequently refined [23] to meet the more
severe challenges of not only significantly improving on the description [22] of MgO but
also providing a good description of the cohesion of the B1 phases of both CaO as well as
ThO, [30] and UQ [31, 32]. Here the previous study [23] is extended to investigate with
the same methods the cohesive properties of MgO and CaO both in the B2 phase as well
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as in the fourfold-coordinated B3 phase having the zincblende structure. This extension
achieves three objectives. The first of these is to study the relation between the electronic
and structural properties of the B1, B2 and B3 phases, examining in particular the phase
dependence of the rearrangement and two-body inter-ionic potential contributions to the
cohesive energy. New and improved predictions for the experimentally unknown cohesive
properties of the B2 and B3 phases are obtained as a byproduct of this investigation. The
second objective of this paper is to present a critical comparison of the different predictions
of the cohesive properties of these two phases emphasizing especially the energy needed to
convert the B1 structure into either the B2 or the B3 phase. The third objective is to present
all the ab-initio results that were both used to parametrize the compressible ion model
description [24] of MgO and CaO and invoked as independent data to test its predictive
power. This model was used derive from the presdninitio results both the pressure—
volume equations of state and the pressures needed to induce the B1-to-B2 transitions [24].

2. Theory and computational methods

The methodology is merely summarized, being the same as that introduced [23] to study
the B1 phases of MgO and CaO. The basic assumption is that both oxides are ionic,
containing G~ ions. Although the discussion [33] might suggest ambiguity for this concept,
arguments [34] justify the definition used in studies [22, 23, 28-30, 35, 36] with the RIP
program [28, 29]. A solid is taken as ionic provided that, with neglect of inter-ionic electron
correlation, the electronic wavefunction of the crystal can be written as an anti-symmetrized
product of wavefunctions for individual ions each of which contains an integral number of
electrons and is spherically symmetric. The cations were taken to be unaffected by their
in-crystal environment [37-40].

The nuclear geometry of a cubic crystal is defined by the closest cation—anion separation
R. For a bound crystal, the negative binding enetgy(R) is defined as the difference
between the crystal energy and the sum of the energies of free doubly charged cations,
free singly charged O ions and free electrons. Neglecting the small nuclear zero-point
motions, the equilibrium closest cation—anion separafprns the value ofR minimizing
U (R). The lattice energyD., the energy required to convert the crystal at its equilibrium
geometry into free cations, freeQons and free electrons, then equal#/; (R,) and can
be determined [9] experimentally from a Born—Haber cycle.

The cohesive energy; (R) yielded by the present fully ionic model is [22, 41]

UrL(R) = Ni{E;.(R) — M/R 4+ ncaVsca(R) + (1/2)[nsaVsaa(xaaR)
+nccVsce(xee R} + Uaisp(R) 1)

after neglecting explicitly three-body and higher-order multi-body terms expected to be
small [34]. All terms inside the curly brackets are in atomic units with stationary isolated
electrons having zero energy. The constait(= 26255) converts an energy per ion in
atomic units into an energy per mole of crystal. In (£).(R) is the rearrangement energy
required to convert one free Gon of energyE,- plus an electron into an® ion in the
crystal with geometry defined bg. Thus

Ere(R) = EA(R) — Eo- (2)

where E4(R) is the energy that an © ion with wavefunction optimal for the crystal
would have when isolated if it retained its in-crystal wavefunction. EEGH (xxy R) (X

or Y = cation C or anion A) is the short-range energy of interaction between ions X and
Y separated by the distanagy R with xyy being anR-independent geometrical constant



5512 N C Pyper

depending on the crystal type. Eaklxy (xxy R) arises from overlap of the wavefunctions of
ions X and Y and vanishes for separations sufficiently large that this overlap is negligible.
Each such term excludes both the point Coulomb interadfigqy /(xxy R) wheregy is

the net charge ion of X as well as the dispersive attraction. The only non-negligible
short-range terms are thoséc,(R) between one cation and itg4 closest anions plus
those V;xx(xxx R) between one ion of type X and theyy closest ions of the same
type. The sum of all point Coulomb interactions enters (1)}-dd/R where M is the
Madelung constant whilst/s;,,(R) is the sum of all the two-body dispersive attractions
[42-44].

Both E,.(R) and V,xy(xxy R) are the sum of uncorrelated contributions denoted by a
zero superscript plus correlation corrections denai@d. The latter were evaluated using
the best of the previously presented [23] density functional methods [45, 46] from relativistic
ion wavefunctions optimizing the uncorrelated description of the crystal. ThuB&R)
were calculated through (4.6) of [23] usim..(¢)-values in table 8 of [23].Ug,(R)
was evaluated [23,47] using the damping parameters of table 9 of [23] which are correct
for the present & wavefunctions.

Each in-crystal & wavefunction was computed using the Oxford Dirac—Fock program
[48] by adding to the intra-ionic potential acting on an electron at positjomelative
to the &~ nucleus the spherical averag&? (r,; R) of the potential generated by the
remaining ions in the crystal. Only this average is needed when the orbitals have the
standard central field form [49] and either are completely filled with electrons or are
empty. F9 (r,; R) is composed of the point lattice term arising if the ion overlapped only
negligibly with its neighbours plus corrections introduced by overlap. The first contribution,
which acts to contract the anion [22,23,34,37-39,50], is a constant stabilizing potential
equal to—¢.,,/R betweenr,-values of zero andr after which it rises towards zero
after several smaller oscillations. This is represented by the Fermi-smoothed function
Fuyrs(rq; R) [23]. The overlap contribution, which also acts to contract an anion, is
a repulsive potential arising in spatial regions where the electron density of other ions
is not negligible, thenc, closest cation neighbours yielding the dominant terms. The
optimized-with-eigenvalues Madelung—Fermi smoothed (OEMFS) mddgl i rs(r.; R))
for F9 (r,; R), which is one of the two most equally satisfactory descriptions [23], results as
a local approximation for the overlap term derived from Phillips—Kleinman pseudopotential
theory. Thus

Foemrs(ra; R) = Fups(ra; R) —ncaA Z(Ei — e)l[pic(re)]}@. 3

iec

Here the sum over is over all filled orbitals of one neighbouring catid@®, p;c(rc) is

the density generated by an electron in orbitaf ion C, {[p;c(rc)]¥}© is the spherically
symmetric quantity resulting whem}-(r¢)]* is expanded about the anion nuclegs(< 0)

is the binding energy of the free-cation orbitadnde is the energy of a stationary electron
in just the constant part af% (r,; R). A andk are determined by optimizing the cohesive
energyU?(R) predicted without including the electron correlation terms but using the RIP
program to compute the uncorrelated short-range interacti@ns(xxy R). This avoids the
previously discussed [51] uncertainties that would arise iffig, (xxy R) were evaluated
using density functional theory.

The potential Fo gy rs(ra; R) and hence the in-crystal?0 wavefunctions depend on
both R and the crystal structure. The constant, introduces structural dependence into
the point lattice tern¥Fy rs(r,; R) whilst the overlap term depends on structure through the
explicit factor ofnc,.
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3. Fundamental results

3.1. The oxide ion properties and two-body inter-ionic potentials

For the R-values in tables 1-6/, (R) has been computed for the B1, B2 and B3 phases
using the OEMFS model. The resulting oxide ion rearrangement energies and the short-
range interactions within both the closest cation—anion and anion—anion pairs predicted both
without and with the inclusion of the contributions from electron correlation are reported.
The results for the B1 structure are those of [23] reported to the six decimal places used to
predict the crystal cohesion.

Table 1. Oxide ion rearrangement energies for the B1, B2 and B3 phases of Blg®R) =
ES(R) + ES (R).

E% (R) (au) Er.(R) (au)

R B3 (4:4) B1(6:6) B2(8:8) B3 (44) Bl1(66) B2(8:38)

3.25 0.706314 0.816522 0.901348 0.598857 0.703242 0.784280
35 0.568477 0.643373 0.701748 0.471412 0.541097 0.595958
3.75 0.488098 0.538466 0.578538 0.399225 0.445066 0.481978
3.981 0.442032 0.477418 0.505826 0.359232 0.390688 0.416283
4.25 0.407395 0.431355 0.450502 0.330368 0.351038 0.367768
4.5 0.388251 0.406228 0.420441 0.315151 0.330271 0.342353
5.0 0.361923 0.372198 0.379970 0.295563 0.303752 0.309928
55 0.346989 0.353605 0.358364 0.285560 0.290613 0.294153

Table 2. Oxide ion rearrangement energies for the B1, B2 and B3 phases of CaO.

ES,(R) (au) E..(R) (au)

R B3 (44) B1(66) B2(8:8) B3(44) BL(66) B2(88)

35 0.892158 0.945913 0.985504 0.734293 0.784577 0.821272
3.75 0.758065 0.794198 0.820473 0.611432 0.644847 0.668823
4.0 0.666279 0.692394 0.711651 0.528304 0.552084 0.569308
4.25 0.585187 0.609756 0.628110 0.454729 0.476625 0.492680
4544 0.492503 0.519933 0.540201 0.371960 0.395630 0.412922
4.75 0.448868 0.474091 0.492824 0.335037 0.356176 0.371780
5.0 0.417281 0.438164 0.453717 0.309919 0.326850 0.339405
55 0.380600 0.394326 0.404968 0.283462 0.293973 0.302000
6.0 0.359113 0.368715 0.375708 0.269700 0.276606 0.281566

The results in tables 1 and 2 show, as would be expected, that for a givitre
rearrangement energies increase on passing from the B3 through the B1 to the B2 structure
corresponding to an increasingly compresséd @n. This is confirmed by both the mean
radii and the mean square radii (tables 7 and 8) of the anion 2p orbitals which, for a given
R, are smallest in the B2 structure whilst being least reduced in the B3 materials. On
passing from the B3 through the B1 to the B2 structure for a giRerthere is only a
slight change inF 9 (r,; R) at smallr, where it is essentially constant and, originating
from the point lattice contribution, is equal teM /2R [52] (i.€. ¢eny = M/2). Thus the
value —3.525 34/ R of F9 (r,; R) at smallr, in the B2 structure is almost the same as that

env

of —3.49513 R in the B1 material whilst neither of these values differs greatly from that
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Table 3. Short-range cation—anion interactions for the B1, B2 and B3 phases of MgO:
Vica(R) = V&4 (R) + V&L (R).

VEAR) (au) Vica(R) (au)

R B3 (44) BL1(66) B2(8:8) B3(44) BL(66) B2(88)

3.25 0.102011 0.085279 0.074829 0.099805 0.083331 0.073045
3.5 0.075029 0.062258 0.054311 0.073185 0.060626 0.052820
3.75 0.056241 0.046614 0.040546 0.054700 0.045243 0.039292
3.981 0.043713 0.036275 0.031557 0.042405 0.035105 0.030484
4.25 0.033264 0.027716 0.024193 0.032179 0.026738 0.023292
4.5 0.025858 0.021496 0.018735 0.024956 0.020680 0.017982
5.0 0.016664 0.013938 0.012243 0.016015 0.013344 0.011690
55 0.011215 0.009399 0.008304 0.010740 0.008961 0.007894

Table 4. Short-range cation—anion interactions for the B1, B2 and B3 phases of CaO.

Ve, (R) (au) Vsca(R) (au)

R B3 (4:4) B1(6:6) B2(8:8) B3(44) Bl(66) B2(8:8)

3.5 0.141064 0.132550 0.126986 0.137036 0.128685 0.123244
3.75 0.093853 0.088065 0.084334 0.090625 0.084956 0.081317
4.0 0.062920 0.058660 0.055861 0.060351 0.056185 0.053460
4.25 0.044962 0.040972 0.038295 0.042891 0.038998 0.036396
4544 0.034956 0.030479 0.027569 0.033234 0.028886 0.026 065
4.75 0.029662 0.025344 0.022593 0.028123 0.023940 0.021280
5.0 0.023540 0.019824 0.017494 0.022220 0.018629 0.016383
55 0.014927 0.012369 0.010720 0.013957 0.011494 0.009912
6.0 0.010060 0.008179 0.007045 0.009334 0.007527 0.006442

Table 5. Short-range anion—-anion interactions in the B1, B2 and B3 phases of MgO:
Viaa(R) = VO 4 (R) + VT (R)).

B3 (R’ = 2./2/3R) Bl (R’ = v/2R) B2 (R’ = (2/+/3R)
VO LR)  Viaa(R) VO, (R  Viaa(R)  VEL(R)  Veaa(R')
R (au) (au) (au) (au) (au) (au)

3.25 0.006432 0.005801 0.017285 0.016230 0.068066 0.064909
35 0.004367 0.003695 0.011886 0.010753 0.043889 0.040727
3.75 0.002714 0.002035 0.007547 0.006378 0.026214 0.023091
3.981 0.001628 0.000961 0.004541 0.003368 0.014640 0.011588
4.25 0.000788 0.000149 0.002113 0.000959 0.005430 0.002482
4.5 0.000350—-0.000235 0.000805-0.000275 0.000541-0.002217
5.0 —0.000105 —0.000613 —0.000632 —0.001613 —0.004917 —0.007 412
55 —0.000240 —0.000672 —0.001063 —0.001 931 —0.006 506 —0.008 731

of —3.276 1V R in the B3 structure. Hence the overwhelming majority of the increasing
anion compression on the passing from the B3 through the B1 to the B2 structure cannot be
attributed to the changes in the depth®yf) (r,; R) at smallr,. On traversing this sequence,

the changes irF© (r,; R) are dominated by those of the overlap contribution because the

env

linear dependence omc, Of the latter (3) causes its variation (at fixdt) to outweigh
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Table 6. Short-range anion—anion interactions in the B1 and B2 phases of CaO.

B1 (6:6) B2 (8:8)

R VIA(W2R) (au)  Viaa(V2R) (au) V3 ,2/3R) (au)  Viaa(2/v/3R) (au)
35 0.003 397 0.003077 0.029940 0.028 136
3.75 0.002260 0.001965 0.019352 0.017677
4.0 0.001 445 0.001186 0.012417 0.010921
4.25 0.001065 0.000830 0.008 450 0.007 132
4.544 0.001053 0.000 787 0.005901 0.004 660
475 0.000953 0.000653 0.004 307 0.003067
5.0 0.000720 0.000 406 0.002594 0.001381
5.5 0.000327 0.000012 0.000247 —0.000894
6.0 0.000091 —0.000213 —0.000916 —0.001992

greatly the small changes in the point lattice term. This shows that it is the changes in the
overlap term which are responsible for the vast majority of the structural dependence of the
anion properties at fixe®.

Table 7. Mean radii and mean square radii of outermost anion orbitals in MgO phases. The
mean radiugr), and mean square radiusz)zp are averages with weights of one third and
two thirds of those for the relativistic orbitals 2p and 2p, [49] havingj = § andj = 3,
respectively.

(r)2p (au) (r?)2, (au)

R B3 Bl B2 B3 Bl B2

3.75 1476 1440 1417 2827 2645 2.536
3.981 1526 1492 1470 3.071 2887 2.773
4.25 1578 1547 1526 3.342 3.161 3.045

Table 8. Mean radii and mean square radii of outermost anion orbitals in CaO phases. The
mean radiugr)z, and mean square radiusz)g,, are averages with weights of one third and
two thirds of those for the relativistic orbitalgp2> and 23,2 [49] having j = % andj = %
respectively.

(r?)2p (au)

R B3 Bl B2 B3 B1 B2

(r>2p (au)

4.25 1435 1421 1409 2599 2538 2.488
4544 1490 1.469 1.452 2.866 2.761 2.686
4.75 1531 1506 1.488 3.075 2942 2.854

Both the &~ orbital properties (tables 7 and 8) and the rearrangement energies (tables 1
and 2) not only show the obvious result that, in each structure, the anion becomes more
compressed with decreasigybut also demonstrate the much more significant point [53]
that theR dependence of,.(R) is at least as large as that of thg-4(R) (tables 3 and 4).

This shows that each quantity regarded as a two-body cation—anion interaction in standard
theories of the Born—Mayer type is actually an effective two-body interaction composed
of the true two-body potentiaV,c4(R) plus a fraction ofE,.(R). The dependence of
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this fraction on the crystal type prevents such effective potentials from being transferable
between different crystal structures [35]. Furthermore the st®mgppendence of,.(R)
explains [53] the discrepancies between #ie(R.)-values predicted using the OEMFS
model and the electron affinities of the Gon presented in standard references.

The results in tables 3 and 4 show, for a giventhat VSOCA(R) and V,c4(R) decrease
on passing from the B3 through the B1 to the B2 structure. Since such repulsions originate
from the overlap of the wavefunctions of the two interacting ions, they decrease because
the anion becomes increasingly compressed on traversing through these structures. These
reductions inVSOCA(R) more than offset the increases Bf,(R) with increasingnc, and
hence the crystal cohesion predicted using anion wavefunctions optimal for a phase is
greater than that predicted using Owavefunctions determined for a structure of smaller
nca. Indeed use of a wavefunction determined for any structure other than that for which
UX(R) is being evaluated always produces a less negative valu&/for). This is a
consequence of the variation principle since the use of the environmental potential correct
for the structure andk-value under consideration yields the anion orbitals which minimize
the total energy evaluated as the expectation value of the crystal electronic Hamiltonian
using the single determinant crystal wavefunction built from these anion orbitals. However,
a variation principle does not exactly hold fgy (R) evaluated with the inclusion of electron
correlation if the latter is calculated, as here, by adding/ig,(R) density functional
correlation predictions derived from anion orbitals computed by mimimizifigr).

3.2. The crystal cohesions

The fully optimal predictions (tables 9 and 10) were derived using, at écthe G~
wavefunction derived from thé“e(,?{, (rq; R) correct for that structure ankl. The B1 optimal
results were derived by using, at eakhthe G~ wavefunction optimal for the B1 structure

at thatR. The calculations agree with experiment, predicting that the B1 structure, adopted
under ambient conditions, has the lowest energy. The reliability of these computations
for the B1 phase, demonstrated by their excellent agreement [23] with experiment, shows
that there is no reason to prefer any previous predictions (table 11) for the experimentally

unknown R, of the B2 phase over the present results.

Table 9. Predicted cohesion of the B1, B2 and B3 phases of MgO. The form (1) is used and
thus all electron correlation contributions are includég. is the volume occupied by 1 mol of
crystal at its equilibrium geometrg = R,.

B3 (4:4) B1 (6:6) B2 (8:8)
for the following for the following for the following
0?~ wavefunctions & wavefunctions & wavefunctions

B1 optimal Fully optimal Fully optimal  Experimental Bl optimal Fully optimal

D, (kJ mor1) 2983 2975 3038 [23] 3038 [9] 2861 2951

R, (au) 3.825 3.769 3.994 [23] 3.974 [61] 4.097 4.195
Vu (1077 m) 153.8 147.1 113.7 112.0 94.5 101.4

B (10!° N m™2) 16.1 15.1 19.9 [23] 17.35[62] 19.9 23.1

a Average of three different results.

For both MgO and CaO, an increasenif,, although predictingR, to increase (tables 9
and 10), yields smalleV,, because the more compact nature of the structures of higher
more than offsets th&, increases. For the MgO phases at their equilibrium geometries, the
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Table 10. Predicted cohesion of the B1, B2 and B3 phases of CaO. The form (1) is used and
thus all electron correlation contributions are includég. is the volume occupied by 1 mol of
crystals at its equilibrium geometg = R,.

B3 (4:4) B1 (6:6) B2 (8:8)
for the following for the following for the following
0% wavefunctions & wavefunctions & wavefunctions

B1 optimal Fully optimal Fully optimal Experimental Bl optimal Fully optimal

D, (kJ moF1) 2505 2522 2645 [23] 2644 [9] 2581 2581

R, (au) 4,525 4.513 4.536 [23] 4.537 [61] 4.628 4.714
Vi (1077 m3) 254.6 252.6 166.6 166.7 136.2 143.9

B (10° N m™2) 7.71 8.83 11.7 [23] 11.3 [63] 11.7 11.4

Table 11. Comparison of R.-values predicted for the B2 phases: Crystal HF, crystal
Hartree—Fock [18]; LAPW, linearized augmented-plane-wave method derived from figure 1
of [20]; APW, augmented plane-wave method [64], results referenced in [12]; local density,
pseudopotential local-density method [19]; KKR, Korringa—Kohn—Rostoker [54] method.

R, (au)
) Pseudopotential
Fully optimal, -
present Crystal HF  LAPW APW Local density KKR
MgO  4.195 4.211 4272 4301 4.244
CaO 4714 4.83 4.674 4.692

anion becomes less compact with increasigg as shown by the simultaneous decrease

in E..(R,) and increase in both the 2p orbital mean radius and mean square radius as well
as in the total mean square anion radiu$),,, (table 12). This trend arises because the
influence on the anion of the increase of around 0.2 aw.irnin passing from both the

B3 to the B1 and from the B1 to the B2 phases more than outweighs the tendency of the
environments of highenc, to produce more confining’? (r,; R). The latter effect is
shown by the increases if,.(R) and decrease ifr),, and (r?),, occurring whemc, is
increased at consta (tables 1, 2, 7 and 8). On passing from the B1 to the B2 phase of
CaO, the 0.178 au enhancementifis comparable with the coordination-number-induced

R, increases of about 0.2 au in MgO and hence tRe ©n in the B2 phase of CaO at

its equilibrium geometry is similarly less compact than in the equilibrium structure of the
B1 phase. However, the 0.023 au difference betweenrthealues predicted for the B3

and B1 phases of CaO is so small that differences between%héo® properties in their
equilibrium geometries are dominated by the tendency of environments of higheto
produce more confining® %) (r,; R). The G~ ion in the B1 phase of CaO is thus more
compressed than in the B3 phase as shown byEther,) and (r"),, in table 12.

Comparison (tables 9 and 10) of the B1 optimal and fully optimal results shows that,
with the exception of the B3 phase of MgO, increased crystal cohesion is predicted if
wavefunctions optimal for the phase under consideration are used rather than those optimal
for the B1 structure at the sankevalues. This is consistent with the variation principle [23]
even though this is only rigorously applicable here to the predictions derived fii(R).

It is shown in the appendix that electron correlation is responsible for the apparently non-
variational results in table 9 for the MgO B3 phase.
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Table 12. Anion properties for the equilibrium geometries of the B1, B2 and B3 phases. The
mean radiugr), and mean square radiusz)zp are averages with weights of one third and
two thirds of those for the relativistic orbitals p and 2p,> [49] having j = % andj = g
respectively.(rz)m, is the sum of contributions from all the anion electrons.

MgO CaO
B3 (4:4) B1 (6:6) B2 (8:8) B3 (4:4) B1 (6:6) B2 (8:8)
Ere(R.) (au) 0.395405 0.387 926 0.375238 0.379019 0.397450 0.378094
Vica(Re) (au) 0.053566 0.034653 0.024 494 0.034121 0.029114 0.021970
(r)2p (au) 1.480 1.495 1.515 1.484 1.468 1.481
(rz)zp (au) 2.847 2.899 2.990 2.836 2.754 2.823
(r?)10r (au) 20.917 21.260 21.814 20.875 20.372 20.788

4. The differences between the lattice energies of the phases

4.1. Comparison of results

The positive differencea U, and AUg between the energy of the B1 phase and those of
the B3 and B2 phases, respectively, are defined through

AUy =UP(R,) — U (R,) = DF' — D3 (4a)
AUg = UP*(R,) — UPY(R,) = DP* — DP?, (4b)

The additional superscript denotes the phase for wilighRr,) has been evaluated. The
predictions forAU, and AUg derived through (1) using both the B1 optimal and the fully
optimal methods are presented in table 13. The best of the present result&/§pthose

of the fully optimal method, are compared in table 14 with previous predictions. The
pseudopotential local density [19] and KKR [54] methods are approximations, introduced
to reduce computational demands, to LAPW theory [20]. Although the crystal Hartree—Fock
[18] and LAPW methods differ in principle from the present approach in making no ionicity
assumption, the evidence that these materials are ionic shows the main difference between
these two methods and the present approach lies in their treatment of electron correlation.

Table 13. Energy differences between the ground Bl phase and the B2 and B3 phases,
respectively, for MgO and CaO.

MgO ca0

B1 optimal  Fully optimal Bl optimal  Fully optimal

AUg (kJ mol)  177.3 87.2 64.4 64.1
AUz (kI motl) 554 63.3 140.0 123.2

The three types of correlation contribution, &} (xxy R), ES(R) and the dispersive
attractions, all act to reduce the energies of structures of highgrrelative to those of
lower coordination for fixedR. This shows that all these terms contribute positively to
AU, but negatively toAUs. The Vi (xxy R) contribute negatively té/52(R) — UFY(R)
because each of these interactions is attractive; not only are there more cation—anion nearest
neighbours in the B2 structure but also the closest anion—anion separation in this structure
is much less than in the B1 material at the safe E¢"(R) contributes negatively to
AUg because the more compact anion charge distribution in the B2 phase &{¢i$€R)
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to be more negative than in the B1 structure at the sBm&he total dispersive attraction
in the B2 structure is greater at a® than in the B1 phase as illustrated by values of
U2, (R)—Ug, (R) of —34 kJ mof* and—60 kJ mot™ for MgO and CaO aR = 3.981 au
and 4.544 au, respectively. The negative contributiona &y from all three correlation
effects show that each crystal Hartree—Fock prediction [18] is an upper bound/§o

because electron correlation is not included in this approach.

Table 14. Comparison of predictions for energy differenee8g between the B1 and B2 phases.
The abbreviations are as in table 11.

AUsg (kJ mol1)

. Pseudopotential Density functional
Fully optimal, Crystal LAPW [20]
present HF [18] local density local density [19] KKR [54] [11] [21] [12]
MgO 87.2 170.7 127.4 145.3 70.9 186.0 1935 195.9
CaO 641 111.0 75.3 138.1 138.1

The LAPW computations use a local correlation energy functional, thus implicitly
including the contribution&/ 7} (xxy R). Although some account a€¢¢""(R) is implicit,
this is almost certainly underestimated because LAPW computations do not include the
scaling factor of roughly two which must be introduced [23Eif"" (R) is to be accurately
predicted by local-density-functional theory. The use of a local correlation functional causes
the LAPW method to predict the total correlation energy of two non-overlapping ions
at a finite internuclear separation to be identical with the value of this total when the
inter-nuclear separation is infinite. This shows that the LAPW method misses entirely the
dispersive attraction between two ions whose inter-nuclear separation is not so short that their
electron densities overlap appreciably. Furthermore purely theoretical arguments [34, 55]
and computational evidence [22, 56] indicate that use of a local correlation functional misses
almost entirely the dispersive attraction between a pair of ions even when their separation is
sufficiently small that the overlap of their wavefunctions significantly reduces the standard
long-range multi-polar form [57] of this attraction. The inter-ionic dispersive attractions are
thus almost completely omitted by LAPW theory at all inter-ionic distances which explains
why its predictions forAUg are greater than those of the present method.

The results (table 14) headed Density functional were derived using density functional
theories [11, 12, 21] which not only were based on the same full ionicity assumption made
here but also included the tersy} (xxy R) as well as considering in [11, 21] the dispersive
attractions. However, despite the inclusion of these correlation terms, all these theories
predictedAUg-values greater than those of the crystal Hartree—Fock method. This shows,
when taken in conjunction with the evidence that MgO and CaO are essentially fully ionic,
that these density functional theories must be judged to be inadequate. Since there are
significant differences between the computations of [12] and those of [21], the similarity of
their predictions is fortuitous.

Electron correlation is not properly considered in either the crystal Hartree—Fock or the
LAPW methods whilst the density functional theories [11, 12, 21] are not adequate. It would
thus appear that the present fully optimal method currently provides the most trustworthy
predictions forAUs.
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4.2. The role of oxide ion compression in the B1-B3 and B1-B2 energy differences

The density functional theories [11, 12, 21] not only significantly overestimafg but also
almost certainly underestimat®U,. Thus, for MgO and CaO, the predictions [21] for
AU, are much less (table 15) than the present results. In particular the prediction [21] of
5.3 kJ mot* for AU, for MgO would appear to be small for an energy difference between
the ground state and a phase for which there is no experimental evidence. This suspicion
that the AU, results of [21] are too small is corroborated by the erroneous prediction
[21] that the B3 phase of LiF lies lower in energy than its experimentally observed B1
structure. These difficulties with the density functional predictionsAdéf;, which have

been previously recognized and discussed [21], as well as the overestimatianggof
uncovered here are different manifestations of the more general problem that the theories
[11, 12, 21] consistently underestimate the stability of structures of higher

Table 15. Comparison of predictions for energy differenaes, between the B1 and B3 phases.

AUy (kJ mol )

Present fully optimal  Density functional [21]

MgO 63.3 5.3
CaO 123.2 29.1

The theories [11, 12, 21] differ from the present RIP calculations in three respects, firstly
in their evaluation of the uncorrelated interactidfﬁy(xxyR), secondly in takingZ<o"" (R)
to be a constant independent of bathand phase and thirdly in their description of the
in-crystal environment of the © ion. Although evaluation of the@%(y(nyR)—vaIues by
using density functional theory rather than computing them exactly with the RIP program
must introduce some inaccuracies [34, 51], there is evidence [22, 58] that the interaction of
two ions having a poutermost electronic configuration is described reasonably well by the
former. This suggests that the difficulties with the computations [11,12,21] do not arise
primarily from their mode of evaluating theS%, (xxy R).

The assumption of constarE¢?""(R) misses contributions t&\U, and AUg arising
from the increases in the magnitude Bf¢"" (R) that occur on increasingc4 at fixed R,
thereby spuriously tending to favour structures of lowet;. However, for bothAUs
for MgO and CaO andAU, for LiF, the inaccuracies introduced by this assumption
are too small to account for the difficulties in the computations [11,12,21]. Thus for
MgO at R = 3981 au and for CaO aR = 4.544 au, EE>"(R) — EBLorr(R)
has values of—7.4 kJ mol! and —7.8 kJ mot?, respectively. For a halide, as
the total rearrangement enerdy.(R) is defined as the difference between the energy
of a singly charged in-crystal anion and that of the free singly charged anion, it is
much smaller than for oxides. Consequently the magnitudes ofEfl€(R) are also
greatly diminished as shown both by the ODMFS model prediction-8f6 kJ mol*
[36] for CaF, at R = 4.5 au near the experimenta@, of 4.448 au [59] and by the
OEMFS result of—6.7 kJ mot? for the B1 phase of LiF at it®R, of 3.7965 au [60].
These values contrast strongly with t#"(R,) for oxides which are typically some
—200 kJ mof! to —300 kJ motl. The differences between thEc"(R) in different
phases of the same halide are much less than the individual terms and thus too small
to account for the erroneous prediction [21] of a ground B3 phase for LiF. For MgO
and CaO the present predictions fa¥o"(R) — EBlorr(R) of 10.3 kJ mol! and
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9.9 kJ mof?! at R-values of 3.981 au and 4.544 au, respectively, show that the constant-
EI"(R) assumption was not primarily responsible for the previous underestimation
[21] of AU4. Nevertheless these correlation contributions are comparable with the
entire AUy-values predicted by the calculations [21], even exceeding the latter for
MgO.

The calculations in [11, 12, 21] differ from the present computations in ugffidr,; R)
constructed by distributing a charge equal to the negative of the anion charge over the
surface of a sphere. In the Watson—-Madelung (WM) model [23,34], used in [11],
the sphere radius is chosen such thé,fg(ru; R) reduces at small, to the potential
generated by the point charge lattice with spaciRg This potential and the closely
related potentials of [12,21] not only rise much less rapidly from the constant value at
small r, than the OEMFS potentials (3) do but also are, unlike (3), nowhere positive.
Consequently the OEMFS model yields anions more contracted than those produced
from the potentials in [11,12,21]. Furthermore RIP computations for MgO and CaO
[23], UO, [31] and Cak [36] have shown that using the less compressed anions
produced by the latter type of environmental potential significantly underestimates the
crystal cohesion, predicting values @, that are too small and oR, that are too
large. Computations using insufficiently compressed anions underestiEpat®) whilst
overestimatingV;c4(R). For example, for the B1 phase of CaO, use of the WM model
predicts ankE,.(4.544) smaller by some 300 kJ mdl and a V,c,(4.544) repulsion
66 kJ mot?! greater than the corresponding OEMFS results. The OEMFS prediction
for Vica(R) is only slightly more than half the WM result. In the approximation
in which both E,.(R) and Vic4(R) are taken to be independent of crystal structure
and yet still dependent oR, E,.(R) cancels out from an energy difference such as
UB2(R) — UEY(R) which then depends solely on the interplay between the Madelung
terms, the dispersion and the short-range repulsions of whigh (R) is by far the
most important. This shows, in the approximation of phase-indepenBgii®) and
Visca(R), that the energies of phases of higler, will be overestimated when compared
with those of lower coordination if one uses an environmental potential which produces
insufficiently compressed anion wavefunctions and hence valueB;©f(R) that are
too large. These excessive repulsions are of exactly the right size to explain why the
theories in [11, 12, 21] predich Ug-values about 100 kJ niof greater than those derived
from the present computations. Thus, for example, the 66 kJ'moVerestimation
of Vsca(4.544) by the WM model for CaO introduces a spurious extra contribution of
132 kJ mot? into its prediction ofU2%(4.544) — UBY(4.544). Even if the approximation
of phase-independerf,.(R) and V,c4(R) is removed, it is clear that structures of higher
coordination number will still be spuriously disfavoured if the environmental potential is
insufficiently compressive and cannot fully describe the adjustment of the anion to its in-
crystal environment.

The report of the density functional theory results [21] examined three possible
explanations for the underestimation @fU, including the suggestion that the WM
environmental model fails to produce sufficiently compressed anion wavefunctions.
However, all these three explanations were dismissed, possible inadequacies of the WM
model being discounted on the grounds that the density functional computations yielded good
predictions for the cohesive properties of the B1 phase. The present results and discussion
reverse this latter conclusion because it has been shown that most of the difficulties with
the density functional theories [11, 12, 21] do actually originate from using environmental
potentials, such as the WM model, which fail to describe fully the confining nature of the
in-crystal environment experienced by an anion electron.
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5. Conclusion

The B2 and B3 phases of magnesium and calcium oxides have been investigated using a
fully ionic model in which the total electronic wavefunction of the crystal is written as

an anti-symmetrized product of individual ion wavefunctions each of which is spherically
symmetric and contains an integral number of electrons, ten for thei@. The major

and uncorrelated portions of the two-body inter-ionic interactions, computed with the RIP,
are exact, once the wavefunctions for the interacting ions are given. The reliability of these
results was ensured by using one of the two most sophisticated models currently available,
namely the OEMFS model, to describe the in-cryst& Gons. The different types of
electron correlation contribution to the crystal cohesion are too important to ignore and were
therefore considered. The inter-ionic dispersive attractions were evaluated taking account
of the damping of these interactions from their standard long-range multi-polar forms when
the overlap of the wavefunctions of the interacting ions ceases to be negligible. A local-
density approximation to density functional theory was used to evaluate the correlation
contributions to both the short-range two-body inter-ionic interactions and the rearrangement
energy needed to convert a free @n into an in-crystal & ion. The excellent agreement
between experiment and the cohesive properties of the B1 phases of MgO and CaO predicted
[23] from the theory incorporating all these refinements is evidence for the reliability of the
present new predictions for the cohesive properties of the B2 and B3 phases. Four main
conclusions emerge from the present investigation.

The first conclusion emerges from the finding that, for a fixed cation—anion inter-nuclear
separationR, the &~ ion becomes increasingly compressed with increasing coordination
number. This is manifested by the increase in oxide rearrangement eBer@y) and
decrease in closest cation—anion short-range two-body interaétiariR) on passing from
the B3 through the B1 to the B2 phase. These structural dependences are appreciable,
showing that they cannot be neglected if the energy differendésand AUs between the
ground B1 phase and the B2 and B3 phases, respectively, are to be reliably predicted. The
presentb-initio results for the two-body potentials and rearrangement energies provided the
data for the construction and testing of the compressible ion model [24]. After parametrizing
from only the results for the B1 phase, this model reproduced the significantly difegvent
initio predictions for the rearrangement energies and two-body potentials in the B2 and B3
phases of both MgO and CaO without invoking any of #feinitio data for the latter two
phases. This provides the evidence for the reliability of the compressible ion model [24]
that is required before it can be exploited to study the much wider range of properties of
ionic assembles having nuclear geometries of lower than cubic symmetry.

The second conclusion of the present paper is that, in the equilibrium geometries of
the three phases, the anion becomes less compressed as the coordination number increases
except when passing from the B3 to the B1 phase of CaO. These expansions arise because
the equilibrium cation—anion separatidfy always increases with increasing coordination
number. In all the cases, except for the transition from the B3 to the B1 phase of CaO,
the tendency of structures of higher coordination number to produce more compressive and
confining environmental potential& (r,; R) and hence more compressed anions is more
than outweighed by the reduction in the confining tendencieﬁjﬁj(ru; R) produced by
the increase imR.

The third conclusion from the present work is that previous computations have
overestimated the energy differenceslUs between the B2 and B1 phases whilst
underestimating the energy differenc&&/, between the B3 and B1 phases. Predictions for
AUg that are too high result from the computations [19, 20] based on the LAPW method
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principally because these miss almost entirely the inter-ionic dispersive attractions. Even
though the density functional computations [11, 21] based on the same ionic model as the
present approach also included dispersion, the former computations overestitviaged
partly because the structural dependence¢f”(R) was ignored but mainly because the
model used to describe the environmental potential fails to generate sufficiently compressed
in-crystal G~ wavefunctions. These deficiencies also explain the apparent underestimation
of AU, by the density functional computations [21].

The fourth conclusion of the present study is that the energy differences between the
different crystal phases cannot be reliably predicted unless an accurate model is used for the
environmental potentiaF© (r,; R) acting on the in-crystal oxide ion electrons. Whilst the

env

OEMFS model forF ¥ (r,; R) used in the present computations is sufficiently realistic, this
is not the case for previous environmental potentials generated by distributing two units of
positive charge over the surface of a sphere. It has already been shown [23] that models of
the latter type fail to produce sufficiently compressed @avefunctions and hence cannot
accurately predict the cohesive properties of individual phases. Here it has been further
shown that the use of insufficiently compressed @avefunctions will spuriously tend to
disfavour structures of higher coordination number. The employment of such wavefunctions
is at least a major and most probably the principal cause of the difficulties with the density

functional computations [11,12, 21].

Appendix

The contributions of electron correlation to both the rearrangement energy and the two-body
inter-ionic potentials are responsible for the apparently non-variational results in table 9
for the B3 phase of MgO. This is shown by predicting the properties of the B3 phase
from the cohesive energy functide(R) + U.isp(R) which excludes all those correlation
contributions which differ between the B1 optimal and the fully optimal approaches. The
B1 optimal method then predict®,-, R.- and B-values of 2716 kJ mot, 3.890 au and
13.8x 10'° N m~2 compared with those of 2719 kJ mé) 3.832 au and 13 x 10'° N m—2

in the fully optimal approach which thus predicts greater cohesion in accordance with the
variation principle. For the B3 phase at eakhthe fully optimal method produces a less
compact G- wavefunction than the B1 optimal approach which causes the magnitude of
E™(R) in the former to be less than in the latter. This reductionAff"" (R)| therefore

tends to increase the cohesion predicted by the B1 optimal approach when compared with
the fully optimal method. For anw, the fully optimal approach yields a negative term
veerr(R) of greater magnitude than the B1 optimal method because the more confpact O
wavefunction produced by the latter method overlaps less with the cation orbitals than does
the anion wavefunction generated by the fully optimal method. Although this effect will tend
to increase the cohesion predicted by the fully optimal method, it is more than outweighed by
the contrary tendency of the terBf?"" (R) with the result that the introduction of electron
correlation will tend to increase the cohesion predicted by the B1 optimal method when
compared with the fully optimal approach. Thus, for examplerat 3.981 au, the Bl
optimal approach yields af¢’’"(3.981)-value more negative by 1®kJ mol* compared

with the fully optimal method whilst the former predicts a value fo{4, (3.981) that is less
negative than that produced by the fully optimal approach by jiEsk mol?!. Although

the introduction of these correlation terms has only favoured the B1 optimal method by
8.8 kJ mol?, the very small differences between the uncorrelatfdr) functions produced

by the two methods causes the introduction of these correlation terms to reverse the order
of the cohesive energies predicted by these two methods for the case of MgO B3 phase.
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